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Abstract—Debugging is a critical step in the development
of any parallel program. However, the traditional interactive
debugging model, where users manually step through code and
inspect their application, does not scale well even for current
supercomputers due its centralized nature. While lightweight
debugging models, which have been proposed as an alternative,
scale well, they can currently only debug a subset of bug
classes. We therefore propose a new model, which we call
prescriptive debugging, to fill this gap between these two
approaches. This user-guided model allows programmers to
express and test their debugging intuition in a way that helps
to reduce the error space. Based on this debugging model we
introduce a prototype implementation embodying this model,
the DySectAPI, allowing programmers to construct probe trees
for automatic, event-driven debugging at scale. In this paper
we introduce the concepts behind DySectAPI and, using both
experimental results and analytical modeling, we show that
the DySectAPI implementation can run with a low overhead
on current systems. We achieve a logarithmic scaling of the
prototype and show predictions that even for a large system
the overhead of the prescriptive debugging model will be small.

I. MOTIVATION

Debugging is an important capability for large-scale simu-
lations, but little has changed in how we debug applications.
At the same time, high-fidelity simulations continue to
drive strong demand for extremely large-scale machines
while pushing application complexity to extremes. As a net
result of this trend, machines with over a million cores are
not uncommon today [1], [2]; and further, mission-critical
applications often comprise a few million lines of code,
coupling many scientific packages and libraries written in
a wide range of programming paradigms and languages,
e.g., C, C++, FORTRAN and Python. This sheer scale
combined with application complexity has made debugging
one of the most arduous tasks in code-development for high
performance computing, HPC.

This situation will become even more challenging in the
future [3]. Due to power and energy concerns, performance
gains on HPC systems no longer come from increased

single-thread performance, but rather, from increased core
counts and the use of accelerators or co-processors. This
trend increasingly requires programmers to rely on hybrid
programming models, such as MPI + OpenMP or MPI
+ CUDA, to realize the full hardware potential, but this
comes at significantly added coding complexity and to many
unintended side effects between the various models. In short,
programming complexity will rise, and with that so will the
likelihood that bugs, particularly with respect to parallelism,
will be introduced into codes; the current interactive (per
thread/process) debugging techniques are not sufficient in
helping programmers overcome these challenges. Without
effective and scalable debugging models, and the tools that
embody these models, the cost of debugging will sharply
increase due to the lost productivity of programmers and
wasted compute cycles.

Unfortunately, while programming models designed to
improve programmers’ productivity are actively studied and
proposed, there has been a lack of studies to understand the
most capable debugging models with the same goal.

Traditional parallel debugging [4], [5], [6] is a several-
decade-old model and does not scale even to today’s core
counts. Most importantly, manually stepping through source
lines and inspecting the application state overwhelms the
programmers with too much information. As a response to
this problem, the lightweight debugging model [7], [8], [9],
[10] arose, where information is sacrificed for scalability,
but has the opposite problem — it scales well by design,
but for many classes of errors, does not provide enough
information. Further work has focused on fully automatic or
semi-automatic debugging that helps automate the detection
of suspicious behavior, e.g., through relative debugging [11]
or automated anomaly detection [12], but these approaches
also limit themselves to particular classes of bugs and do
not provide the generality of interactive debuggers.

To fill this gap, we propose a novel scalable debugging
model called prescriptive parallel debugging that helps users



automate the tedious parts of interactive debugging, while
keeping its generality, and present our implementation that
embodies this model: the Dynamic Scalable Event-Chain
Tracing API or DySectAPI. This model offers a highly-
scalable debugging paradigm by using an engine that ex-
presses a programmer’s debugging intuition to automatically
and progressively reduces the error search space across both
the task and source-code dimensions.

Our approach allows programmers to install debugging
probes into a parallel application. These probes can gather
data under user-specified conditions, in the form of either
debugging procedures (e.g., trigger an action when a certain
set of breakpoints is hit) or code behaviors (e.g., trigger an
action when the code hangs). Probes are linked into a probe
tree, automatically driving the prescribed debugging actions
to reduce the error space. When the specified conditions are
met, it presents highly condensed debug information to the
programmer.

We demonstrate the scalability of our model by empiri-
cally evaluating the performance overheads of various probe-
tree topologies of the DySectAPI and also by deriving a
performance model. The evaluation suggests that using a
probe tree that prunes out processes that are not of interest
scales better than a flat topology analogous to the traditional
debugging model. Further, we present results from a case
study that show the effectiveness of our model: we used a
DySectAPI probe tree to effectively debug a previously un-
diagnosed, real-world bug in a scientific application, which
manifested itself only when scaled to 3,456 MPI processes.

A. Contributions
To summarize, we make the following contributions:

« A novel prescription-based debugging model striking a
balance between scalability and capability;

o The DySectAPl, an implementation embodying this
model;

« Empirical experiments and an analytic model of over-
heads of the DySectAPI;

e A case study on a real world application showing its
effectiveness.

II. MODELS IN PARALLEL DEBUGGING

The current state of the art in parallel debugging is
focused on four main models: traditional; lightweight; semi-
automatic; and automatic. In this section, we discuss the
pros and cons of these models and the implications of the
architectural and application trends in HPC.

The traditional debugging model seeks to aid program-
mers in interactively diagnosing an error. It enables them
to view the detailed program state and to modify it at any
point in execution. The tools that offer this paradigm include
GDB [6], DDT [5] and TotalView [4]. They must provide
features that support nearly all debugging facets. Commonly,
these features include various data displays, lock stepping of

execution, breakpoints or evaluation-points, and process or
thread group control, such as barriers, if the tool is parallel-
aware.

This model is highly effective in isolating the root cause
of many classes of errors at low to moderate scales. How-
ever, in the face of large concurrency and high application
complexity, its effectiveness starts to decrease sharply. More
importantly, manually viewing and managing detailed state
information at various points of execution is becoming
increasingly unwieldy at only a few thousands of processes
and on complex modern design patterns. The recent efforts
of several parallel debugger vendors [5], [13] have improved
software scalability by supporting the model through in-
novative communication and display mechanisms. But its
fundamental scheme of having to enable all idioms for
interactive use and the central point of control, i.e., the user,
clearly limits its scalability.

The lightweight model has recently emerged in specific
response to the challenges at scale. This model pursues
trade-offs between debugging scalability and capabilities.
Thus, the tools of this paradigm, such as the Stack Trace
Analysis Tool, STAT [7], [8], [9], [14], IBM’s Blue Gene
Coreprocessor debugger [10] and Cray’s Abnormal Ter-
mination Processing, ATP [15], drastically limit the types
and amount of execution state information that are fetched,
collected and displayed. They also limit the level of user
interaction and provide only coarse mechanisms to select
points in execution to analyze. This paradigm has proven to
be extremely scalable, for example, STAT has successfully
isolated certain classes of errors that only emerge over one
million processes. However, due to its coarseness, it can
leave programmers with no actionable information on some
other classes of errors.

The semi-automatic model is based on user-guided au-
tomation of finding errors in large data arrays. Relative
debugging [11] allows users to select corresponding data
arrays and points in two slightly different versions of the
same program, and at runtime automatically differentiates
the arrays at those points. The idea is that the region of code
where corresponding arrays of different versions diverge is
likely to be where the error originated. Because the bulk
of analysis is computed, this model significantly reduces
user interaction and saves the user from having to examine
individual data array elements manually. However, its main
debugging mode that requires two different simultaneously
running jobs can hamper debugging those errors that emerge
only at large scales, due to resource requirements.

Further, recent work, such as assertion-based parallel
debugging [16], has advanced this model to be used in more
diverse scenarios, including comparing processes within a
single job, and also to be more scalable. However, it targets
data-centric errors, as opposed to being general purpose.

The automatic model has burgeoned in recent years
with a promise to isolate general programming errors with
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Figure 1: Debugging models.

no user intervention. Specific work in this area includes
AutomaDeD [17], [18], [19], which applies statistical tech-
niques on a semi-markov model representation of MPI
processes to automatically detect and localize software bugs.
The model also strives to automate code instrumentation
and hence avoids opening the execution state and selection
mechanisms to the users. While the automatic identification
of erroneous tasks and code regions is the ideal approach,
and recent work [18] has shown that this model can scale
easily to a very large number of tasks, the level of iso-
lation is only as good as the analysis and instrumentation
techniques, which are currently still lacking. Often, a user’s
debugging intuition can allow a model to overcome the lack
of analysis accuracy and precision, but the automatic nature
makes it hard to take advantage of this intuition for error
isolation. Other than these approaches, more popular form
of automated tools tend to target specific types of errors,
such as memory leaks [20] or MPI coding errors [21], [22],
[23], [24].

III. IN SEARCH FOR SWEET SPOTS

At Lawrence Livermore National Laboratory (LLNL), one
of the largest supercomputing centers, we have provided
many tools embodying the debugging models described in
Section II. In recent years, however, it became apparent
that a significant gap exists in models of parallel debugging
on large HPC environments. The traditional model offers a
general-purpose environment, but does not scale well. Other
debugging models scale better, but can target only specific
classes of errors, making them special purpose.

For example STAT can be used to efficiently debug hangs
at large scale, while doing so with a traditional debugger can
be slow and complicated. STAT groups processes exhibiting
similar behavior and can quickly expose why the hang
arises, oftentimes due to a small set of outlier processes.
With a traditional debugger, digesting the information from
the many processes can overwhelm the programmer. On
the other hand, a simple bug in the program logic that is
exhibited even at small scale can be simpler to debug with
a traditional debugger. STAT is a special purpose tool and
can only find a bug if it visible by analyzing the stack traces
of the application.

Therefore, we find significant needs for a new model that
can be extremely scalable, yet capable enough, to serve
general-purpose debugging. Figure 1 illustrates this notion.

To explore the trade-off space, we first identify several
key principles that should drive the construction of a new
scalable, general-purpose debugging model.

The new model must:

1) Be an engine to test the hypothesis behind a program-

mer’s debugging intuition;

2) Enable users to express their intuition easily in terms

of progressive reduction of error space;

3) Guide run-time debug actions with minimal interaction

with the user;

4) Present condensed information after the error space is

reduced.

The first principle states that any general-purpose debug-
ging model must assist users with mechanisms well-suited
to test the programmer’s debugging intuition, otherwise, the
model is limited to be special purpose. The second principle
dictates how to capture this intuition. Ultimately, the goal of
any parallel debugger is to narrow down the root cause of a
problem in several dimensions. One is to determine which
particular process(es) or which thread(s) exhibit erroneous
behavior. A second is to pinpoint the precise source-code
location of the bug. Yet another dimension can be to isolate
any contaminated data that led to the error. The new model
must enable users to encode the notion of progressive
reduction on the potentially huge error search space along
all dimensions.

The third principle argues for the batch processing of
debugging actions whereby the debugging expressions given
by the programmer are evaluated in batches [25]. This is
necessary because the sheer volume of debug data may slow
down a traditional model to the point where the tool would
be intolerable to use. Even if a debugger could process that
data with interactive latencies, it would be challenging to
present that much data in a form that is scalable to the
user. Computers, on the other hand, are much better suited
for the task of sifting through massive amounts of data.
Along with the third principle, the fourth one addresses the
limitation in a programmer’s information processing ability.
Any information provided to the users must not be too much
for a human to digest.

IV. A NEW MODEL: PRESCRIPTIVE DEBUGGING

The traditional debugging paradigm has survived because
it provides the rudimentary operations that a user needs to
effectively reduce the error search space. In a typical debug
session, a user first sets a breakpoint at a particular code
location. Once that breakpoint is triggered, the user will
evaluate the state of the application and subsequently set
another breakpoint, perhaps on a subset of processes that
satisfy certain conditions. This process is then repeated until
the bug is isolated.



Our new prescriptive debugging model aims to capture the
flexibility and generality of this interactive process, but allow
users to codify individual steps and sequences in the form of
debug probes that can then be executed without the need for
individual interactions between debugger and user. Similar
to Aspect-Oriented Programming, AOP [26], the prescriptive
debugging model addresses the separation of concerns. AOP
breaks down program logic into distinct concerns, where
one concern could be debugging. AOP does not address
scalability or debugging in general and does not satisfy
the four guiding principles from section III. Essentially, the
prescriptive debugging model provides the means for a user
to codify their debugging intuition into prescribed debug
sessions. The application can then be submitted into the
system’s batch queue to be run under that debug session.
At runtime, the debugger follows the user’s intuition by
executing the debug probes and, at the end, scalably gathers
summary information that can be examined by the user
during the execution or at their convenience after the job
has completed.

Our prescriptive parallel debugging model is built upon
the notion of probes that can be linked together into a
probe tree. A probe itself is composed of a domain, events,
conditions, and actions as defined below.

Probe = (Domain, Events, Conditions,
{Actions}, { Probes})

The domain is the set of processes to install a probe into.
It also includes a synchronization operation that determines
how long the probe should wait for processes in the domain
before proceeding. More precisely, after the first process
triggers a probe, the remaining processes have until some
specified timeout to participate.

We define an event as an occurrence of interest. Events
borrowed from traditional debuggers include breakpoints,
which specify a code location (when reached, the debugger
will stop the target process) and data watchpoints, which
monitor particular variables, memory locations or registers.
An event can also be a user-defined timeout that instructs
a probe to be triggered after some elapsed amount of time.
Events can also capture asynchronous occurrences such as a
program crash, a signal being raised or a system-level event
such as memory exhaustion.

These events allow programmers to express their debug-
ging in terms of a set of procedures and in terms of code
behaviors—e.g., on detecting a hang or slowness.

Further, individual events can also be composed together
to enable advanced fine-grained event selection.

When an event occurs, its associated condition is evalu-
ated. The condition is an expression that can be evaluated
either locally on each backend or globally across the domain.
A local condition may, for instance, check if a variable
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Figure 2: Example probe tree and corresponding processes
being filtered out during the search space reduction.

equals a particular value. A global condition can evaluate an
aggregated value, such as minimum, maximum or average,
across the entire domain. Conditions can also be composed
to specify multiple variables of interest or to combine local
and global evaluations.

If the condition is satisfied, the probe is said to be
triggered, and the specified actions are executed. Probe
actions can be formulated by the user as an aggregation or a
reduction, for example, aggregated messages, merged stack
traces or the minimum and maximum of a variable.

A probe can optionally include a set of child probes,
which is enabled upon the satisfaction of the parent probe’s
condition. In this manner, a user can create a probe tree. A
probe tree naturally matches the control-flow traversal that is
typical of an interactive session with a traditional debugger.
This can effectively narrow down the search space across
the source-code dimension.

An example of a probe tree is shown in Figure 2a and the
corresponding search-space reduction is shown in Figure 2b.
As the application progresses, the probe tree effectively
narrows down the search across the process space. As
child probes are only installed in processes that satisfy the
condition, processes that are not of interest are implicitly
filtered out. Filtering not only helps narrow down the debug
search space, but also reduces the number of subsequent
probe installations, the amount of tool communication and
the volume of data produced. These qualities are paramount
to the scalability of the prescriptive parallel debugging



model, both for the user’s comprehension and for the tool’s
operation.

The process-space reduction has an additional benefit to
debugging capabilities. While operations on the full applica-
tion or a large set of processes should be lightweight in order
to scale, operations on a small subset can be more complex.
Thus, a well-formed probe tree would start with high-level
summary information, such as a merged stack trace or a
message displaying aggregated values, and get progressively
complex, perhaps even gathering individual variable values
across a subset of tasks.

A debugging session is then defined as a set of probe trees.
Generic debug sessions can be created for common errors
such as hangs, segmentation violations or other crashes.
Furthermore, developers can create application-specific de-
bugging sessions for their users to employ when an error oc-
curs. With inside knowledge, the developer can write debug
sessions that track known invariants for deviation, monitor
control flow for abnormal behavior or specify conditions
under which an application is considered to be hung. The
aggregated debug log messages or merged stack traces can
then be analyzed by the user or the developer to aid in
identifying the root cause.

V. DYSECTAPI: THE DYNAMIC SCALABLE EVENT
TRACING API

Based on the guiding principles from Section III and fol-
lowing the prescriptive debugging model introduced above,
we developed the Dynamic Scalable Event-Chain Tracing
API, DySectAPI. DySectAPI allows programmers to express
and test their debugging intuition, executes with minimal
user interaction and only presents condensed information
once the error space has been reduced.

The programmer specifies a debugging session prior to
the execution, based on their debugging intuition. They do
so in a session file using our API for expressing probes and
probe trees.

The workflow of DySectAPI has six steps:

1) Prior to execution, the developer encodes a debugging
session, which may contain several probe trees.

2) The session is compiled into a shared library.

3) The target application is launched by the DySectAPI
runtime and the probe trees are installed in the specified
domains.

4) The application executes.

5) When probes are triggered, the developer-specified con-
ditions and actions are performed.

6) The condensed diagnostic output is presented to the
programmer.

Figure 5 illustrates this workflow.

A. Expressing Debugging Intuition

DySectAPI allows programmers to express their debug-
ging intuition using probes and probe trees. Probes are

1 Probex pl= new Probe(

2 Code::location (”instrumentationHead”) ,

3 Domain:: world (10),

4 Act::trace (”probe 1: Location is
instrumentationHead ()”)) ;

5

6 Probex p2 = new Probe(

7 Code:: location (”instrumentPoint2”) ,

8 Domain:: world (10) ,

9 Act::trace (”probe 2: Location is
instrumentationPoint2 ()”));

10

11 ProbeTree :: addRoot(pl);
12 pl—link (p2);

Figure 3: Example probe tree debugging session.

1 void instrumentPoint2 () {

2 static volatile int _count = 0;
3 _count++;

4}

5

6 void instrumentHead () {

7 static volatile int _count = 0;
8 instrumentPoint2 () ;

9 _count++;

10 }

12 int main() {}
13 MPI_Init(&argec , &argv);
14 for(int i = 0; i < N; i++) {

15 instrumentHead () ;

16 MPI_Barrier (MPLCOMM_WORLD) ;
17

18 MPI_Finalize () ;

19 3

Figure 4: Example parallel application.

represented as C++ objects, which can be linked into a probe
tree. A debugging session snippet can be seen in Figure 3.
This snippet is compiled into a shared library and launched
together with the target binary under the tool’s control.
The two probes are triggered at the source code location
instrumentationHead and instrumentPoint2 in
the target example program in Figure 4. The first probe
will be installed in all target processes. When triggered it
will send a message through the network with the number
of triggered processes. This will result in a message being
printed by the frontend. In addition, when the first probe has
been triggered, the second probe is enabled in the processes
that triggered the first probe.

The probe-tree debugging primitives allow programmers
to specify their debugging intuition and to test their debug-
ging hypothesis. The supported capabilities are:

Events: can be either a code-centric classical break-
point or an asynchronous event such as a signal. The latter



includes a crash, an exit or a specific signal number.

Conditions: are evaluations based on data such as
variables, e.g. x > 0 && y < 0.

Domain: specifies in which processes to install the
probe. This can be all processes or in a subset based
on their MPI rank. An optional timeout can also specify
the maximum time to wait for other participants before
aggregating. The default is to wait infinitely long or until
all processes have been triggered.

Actions: can be formulated as aggregations or reduc-
tions, including messages that can aggregate the min, max
and desc([min,max]) of variables, and the function
or source-code location where triggered. There are no
restrictions with respect to encapsulation and local variables.
Further, the system can produce merged stack-traces both in
text and graphical form.

B. Infrastructure

One important factor in DySectAPI is its scalability,
which we achieve by basing communication on MRNet [27],
an efficient tree-based overlay network, TBON, for scalable
tool communication and data processing. This system allows
us to not only execute communication hierarchically follow-
ing a tree structure, but also to embed processing operations
into the tree, avoiding a central processing bottleneck at the
tool frontend. In particular, our aggregation process has two
steps:

1) Local data is aggregated on each backend. A backend
is attached to a set of processes. When one process
triggers a probe, other processes triggered within a
timeout will form one packet to be sent through the
MRNet tree network.

2) Packages from multiple backends are aggregated. Each
MRNet node is also setup to wait for a specified timeout
before forwarding packets through the network.

This process is illustrated in Figure 6. A set of events
happens on each backend and is then efficiently aggregated
using the MRNet network. DySectAPI uses Dyninst [28]
to control and debug application processes. Dyninst is an
API for binary analysis, binary instrumentation and process
control. Dyninst allows us to debug unmodified application
processes.

VI. EVALUATION

We evaluate the DySectAPI implementation to demon-
strate the scalability and effectiveness of the proposed pre-
scriptive debugging model. However, evaluating all aspects
of a debugger is hard. It is possible to measure the perfor-
mance of the debugging primitives in a traditional interactive
debugger, but those numbers would not account for human
interaction, which would require a larger psychological
study. Similarly, it is hard to quantify the usability of a
debugger, given the complexity of debugging.

,  Probe triggered | Send count of '
.

i I triggered processes :

’ |

]

]

1

| Continue processes !
-

1

Figure 6: Communication architecture. The example probe
counts the number of triggered processes and aggregates
the information efficiently using the MRNet communication
tree.

We therefore want to show that the prescriptive paral-
lel debugging model has the scaling characteristics of the
lightweight debugging model and a sufficient set of capabil-
ities from the traditional, interactive debugger to capture a
wide range of parallel bugs. The main questions we seek to
answer are:

o What is the scalability of the prescriptive debugging
model?

o Can we use the capabilities of the prescriptive debug-
ging model to debug real parallel bugs only manifesting
themselves at scale?

We answer the first question by focusing on how the
underlying implementation scales on large parallel machines
using a performance study combined with modeling that
predicts the scalability beyond current machine resources.
This is valuable to determine if our debugging model is
going to scale on large systems. As a baseline for the
scalability of the traditional interactive parallel debugger we
ignore the human factor and use a batch debugging session
that reflects the operations in a traditional interactive session.

Second, we wish to demonstrate the prescriptive debug-
ging model validity and usefulness. We do so by focusing
on the usability of the debugging model with a use-case ex-
ample. In this way we show how the prescriptive debugging
model can be applied to an undiagnosed real-world bug that
emerges at large scale and outline the steps involved.

A. Experimental Setup

All experiments were conducted on the Cab Linux cluster
located at the Lawrence Livermore National Laboratory.
This cluster consists of 1,296 nodes, each with 2 Intel Xeon
ES5-2670 processors for a total of 20,736 cores and 41.5 TB
memory. Each node has a total of 16 cores. DySectAPI has
been built on top of MRNet 4.1 and Dyninst 8.2.



User

e STAT frontend

debug Compile
session o

A

Diagnostics presented
to the programmer

Target application
processes instrumented

Launch and by STAT backends

attach

\

A

D
[512] instrumentHead() hit
[8] Processes crashed

222

Figure 5: DySectAPI workflow: the programmer’s debugging session is compiled and then launched. Probe trees are installed
into the application and whenever probes are triggered, diagnostics are propagated up to the programmer.

Number of processes enabling
probe

Prune ratio

Number of processes triggering
probe and installing children

Figure 7: Pruning ratio in a probe.

B. Analytical Performance modeling

We derive an analytical performance model for an ar-
bitrary probe tree to both reason about the underlying
scalability and to predict scalability beyond current machine
resources.

In each probe, we include a pruning factor, which is the
fraction of processes that a probe filters out. A ratio in a
probe of 0.5 means that 50% of the processes are filtered
out by that probe. Figure 7 illustrates this notion.

Each compute node runs several application processes
and one backend daemon that is responsible for debug-
ging all processes on that node. We refer to the ances-
tor of a probe, in the probe tree as ancs(probe). The
maz(install Spackend(probe)) is the maximum number of
installations on any backend for that probe.

We first consider the number of probe installations,
installs(probe), for a single probe on a single backend. The
root probe is installed into all specified processes, while the
number of children probes depends on how many processes
satisfied the conditions associated with their ancestors:

root, max (install Spackend)

installs(probe) =
(probe) {otherwise,invocs(ancs(probe))

ey

The number of invocations, invocs(probe), defines the
number of times a probe is triggered on a single backend:

tnvocs(probe) = (1 — ratio(probe)) - installs(probe) (2)

Probe installation are distributed across the backends and
thus each backend install probes in parallel. For example if
a probe has to be installed in a total of 16 processes across
two backends, and they each install in 8 processes, the cost
of doing so should only account for one backend, as the
installations will happen simultaneously.

The cost of installation might be slightly higher on one
backend due to variations in the load in each backend,
therefore we use max to represent the maximum value that
we encountered across a large number of runs.

The model is not restricted to how many installations
happen on each backend, where one backend could perform
all the installations. Therefore, we use the backend that has
the highest number of installations. The cost of installation
for one probe is:

coStinst(probe) =max(costinst)- 3)
max (instSpackend(Probe))

The cost of invoking the probe has a sequential part and

a communication part. The latter assumes that the depth of

the MRNet topology increases as the number of processes

increases, making network cost a logarithmic function as it

depends on the MRNet tree depth [29]. We define Np,,ocesses

as the number of processes that a probe has triggered in the
application.

€0Stinvoc(probe) =max(costinyoc):

maz (Invocspackend (probe))+

max (COStnetwork) : log(Nprocesses )

“4)



The total cost of all probes in the tree is the sum of the
costs for installing and invoking each probe.

|probes|

COSttotal - Z COSﬁinstull(i) + COStinvoc(i) (5)
=0

We are interested in deriving what limits the scala-
bility of our model. Therefore, we study what happens
when limy,, ......—c0- In this case the logarithmic net-
work term dwarfs the other factors. The cost of in-
stallation, cost;,st(probe) becomes a constant as both
max(costinst) and max(instspackend(probe)) are con-
stants. Similarly, for the cost of invocation cost;,oc(probe),
both maz(costinyec) and maz(invocspackend(probe)) are
constants. This leaves the logarithmic network term as the

dominating factor:

lim COSttotal == max(COStnetwork ) 'log(Nprocesses)
Nprocesses—+00
(6)

Therefore we conclude that our model is able to achieve
logarithmic scalability with our implementation. This is
critical to enable scaling to extreme system sizes.

C. Performance Results

The model predicts logarithmic scalability O(logn). In
practice, many details can limit the scalability and we
therefore seek to validate our model and to model scalability
using experimental data.

Optimally we would compare the performance directly to
a traditional debugger, however doing so would require a
large psychological study. Therefore we ignore the human
factor and use a flat probe tree without any pruning as
the baseline. In the flat probe tree, the root probe installs
four children probes without any pruning. Each child probe
aggregates a single message across all processes that satisfy
the probe’s condition. An example of the probes can be seen
in Figure 3, containing the first two probes in the tree, and
the target application in Figure 4.

During execution of a DySectAPI debugging session, a
reduction in the task search space naturally occurs as probes
are dynamically enabled only when a specified condition is
met, which leads to reductions in the amount of instrumen-
tation and in the amount of debug information generated. A
chained probe tree with each probe tree having a pruning
ratio of 50% represents the prescriptive debugging model.
The pruning ratio is chosen as a representative pruning ratio.
Actual pruning ratios in real scenarios will depend on the
prescribed debugging session, the program being debugged
and the inputs to the program. We will later study how
important the pruning ratio is. The pruning of processes
will be spread out equally over all the backends in our
experiment.
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Figure 8: Actual and modeled execution time on Cab with
16 cores per node for a flat and a deep probe tree with 50%
pruning.

Using microbenchmarking of DySectAPI we have
obtained the following costs costinyoe = 0.72ms,
costinstanl = 0.28ms and costy,etwork = 4.6ms.

Figure 8 shows the actual and modeled overhead of
the two probe trees with a pruning factor of 50% in the
deep probe tree. We see that the modeled execution time
for the deep probe tree more closely resembles the actual
execution time, while for the flat tree there is a small
difference. This is due to overlapping communication that
results in a smaller communication overhead than modeled.
In both cases, though, the model predicts an upper bound
and therefore matches the observed scaling behavior, which
is, as modeled, logarithmic.

The filtering of processes also reduces the amount of
information presented to the programmer. For example in
the chained deep tree consisting of four probe 87.5% of the
original processes are filtered out.

D. Predicting Large Scale Performance

The introduced performance model is a good estimate of
the worst-case runtime as exhibited by DySectAPI. We can
use the model to predict the performance beyond current
machine resources if we assume that the Cab cluster were
an order of magnitude larger and exhibited the same perfor-
mance.

Figure 9 show what the scalability would be like on a
very large system. The modeled probes are the same ones
as in Figure 8, consisting of four probes organized either in
a flat tree or a deep chained tree with 50% pruning. The
predicted overhead for a system with over 1,000,000 cores
is just 180 ms for the four probes. This is consistent with
the traditional interactive debugger DDT, which claims in
the best case being able to step and display 700,000 cores
in 100 ms [5].

We also model the performance of the DySectAPI imple-
mentation for multiple pruning ratios and for cases when
the pruning is not spread out equally over the backends.
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Figure 9: Modeled execution time on a larger version of Cab
with 16 cores per node.

The pruning ratio affects the number of probe invocations
per backend and has a demonstrable impact on overhead. At
1,048,576 cores the modeled overhead for the four probes
organized in a deep chained tree, with 25% pruning in each
of the probes, is 212.5 ms. With a pruning ratio of 50% the
overhead is 177.2 ms and with a pruning ratio of 75% the
overhead is only 135.7 ms. Thus, overhead can be reduced
by expressing probe trees in a way that prunes out many
processes.

Intuitively, and according to the performance model, the
cost of installing and invoking a probe depends on the
backend with the highest cost. If we assume that the pruning
of processes is unbalanced such that none are pruned on one
backend, at 1,048,576 cores for the four probes organized in
a deep chained tree, with a 25% pruning ratio, the modeled
execution time overhead is 240.6 ms. With a pruning ratio
of 50% the overhead is 221.9 ms and with a pruning ratio
of 75% the overhead is 189.8 ms. Thus even if pruning
of processes is unbalanced, the amount of pruning has a
big impact on the execution time overhead. This can be
explained by the difference in the overall amount of debug
information that needs to be processed.

E. Case Study

We have evaluated DySectAPI on an MPI bug that only
manifested itself at or above 3,456 MPI processes with
BoomerAMG, a high-performance preconditioner library
developed at the Lawrence Livermore National Labora-
tory [30].

A specific configuration led to failures at scale and
we have used DySectAPI to investigate the issue. An
error was emitted by a method within MPI called
MPI_Error_string. Therefore we started with the sim-
ple probe seen in Figure 10 to figure out which call-path led
to the error message being printed.

The probe resulted in the debug output shown in Fig-
ure 11. From the output we see how a small subset of

Probex mpiError =
new Probe(Code::location (”MPI_Err_str”),
Domain:: world (100),
Acts (Act:: stackTrace (),
Act::trace ("MPI_Err_str probe”)));

(O RSN OV S

Figure 10: MPI bug probe example.

1 DysectAPI Frontend:Info > [6] Trace: MPI
Error string probe

2 DysectAPI Frontend:Info > [6] Stack trace

3 DysectAPI Frontend:Info > |—> [6] _start >
__libc_start_main > main >
HYPRE_PCGSetup > hypre_PCGSetup >
HYPRE_BoomerAMGSetup >
hypre_BoomerAMGSetup >
hypre_seqAMGSetup >
hypre_BoomerAMGSetup >
hypre_BoomerAMGCreateS >
hypre_MatvecCommPkgCreate >
hypre_MatvecCommPkgCreate_core >
hypre_MPI_Allgather > MPI_Allgather >
intra_Allgather > MPIR_ToPointer >
MPIR_Error > MPIR_Errors_are_fatal >
PMPI_Error_string

Figure 11: MPI bug probe example output.

6 processes called the MPI_FError_string routine and
had equivalent stack traces. We can also see that the issue
could be related to the call to MPI_Allgather and its call
to MPIR_ToPointer, which resolves MPI communicator
identifiers into pointers of the corresponding internal com-
municator structure. To this end, we created a more advanced
probe to give more detailed information about the error, as
shown in Figure 12. This probe tree captures the callpath
from the previous stack trace and prints a trace message
with the communicator identifiers. Further, a more detailed
segmentation fault detector is setup to show precisely where
it happens and to print the communicator identifier.

Figure 13 shows the debugging output of the probe.
We see how three processes trigger the segmentation fault
exception at the same location. By inspecting the call site
at intra_fns_new.c:2885 we see that this bug only
appears in a shared memory feature, sporadically causing
floating values to be resolved into pointers. We looked into
the communicator initialization code and found a member
field that was uninitialized. The problem was an issue in a
recently upgraded MVAPICH 1.2.7 MPI library. Based on
this diagnosis, a work-around was quickly identified and a
bug was reported to the MVAPICH developers.

With this use case, we demonstrate how the prescriptive
debugging model can be used as an engine to allow program-
mers to test their debugging intuition and that the expres-
siveness of the model helps reduce the error space. The use
case shows how the prescriptive debugging model is capable



1 DysectAPI Frontend: Info > [369] Trace:
2 DysectAPI Frontend: Info > [368] Trace:
3 DysectAPI Frontend: Info > [363] Trace:
4 DysectAPI Frontend: Info > [3] Stack trace:
5 DysectAPI Frontend: Info > |—> [3] _start >

MPI_Allgather communicators: comm =
Intra allgather 1st comm = [92:92]
Intra allgather 2nd comm =

[92:92]

[92:92]

__libc_start_main > main > HYPRE_PCGSetup >

hypre_PCGSetup > HYPRE_BoomerAMGSetup > hypre_BoomerAMGSetup > hypre_seqAMGSetup >
hypre_BoomerAMGSetup > hypre_BoomerAMGCreateS > hypre_MatvecCommPkgCreate >
hypre_MatvecCommPkgCreate_core > hypre_MPI_Allgather > MPI_Allgather > intra_Allgather

> intra_Allgather
6 DysectAPI Frontend: Info > [3] Trace:

Segmentation fault at

location: /usr/ local/tools/

mvapich—intel —debug —1.2/src/src/coll/intra_fns_new .c:2885

7 DysectAPI Frontend: Info > [3] Trace:

comm =

[0:0]

Figure 13: MPI bug advanced probe example output.

Event #hypre segAMGSetup ‘

|

Event #hypre MatvecCommPkg
Create_core

|

Event #MPI_Allgather ‘

Actions trace(“MPI_Allgather
communicators: @desc(comm)”)

#intra Allgather

Event signal (SIGSEGV) ‘ Event

Actions trace(“Intra Allgather 1st:
@desc(comm)”)

!

Event #intra Allgather

trace(“Seg fault at: @location”),
trace(“@desc(comm)”)

Actions stackTrace(),

Actions trace(“Intra Allgather 2nd:
@desc(comm)”)

Figure 12: MPI bug advanced probe example.

of reducing to very condensed debugging information even
for a complex debugging scenario.

VII. CONCLUSIONS

Prescriptive debugging is a novel debugging model that
can scale without sacrificing key debugging information
presented to programmers, thus filling the gap between
traditional and lightweight debuggers. It allows program-
mers to codify their debugging intuition and to test their
hypothesis with minimal user interaction during run-time.
This allows the error search space to be reduced such that the
information presented to the programmer is very condensed.

Using both experimental results and analytical modeling
we show that our prototype implementation, DySectAPI,
has logarithmic scaling on current systems. We also predict
performance beyond current machine resources, and our

model predicts good performance results even for very large
system scales.
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